Primes of the Form $x^2 + ny^2$ and Quadratic Forms

Atharva Gawde Mentor: Simran Khunger

University of Michigan

November 28, 2023

Atharva Gawde Mentor: Simran Khunger (University o Primes of the Form $x^2 + ny^2$ and Quadratic Forms

• • • • • • • • • • • • •

3.5 3

Theorem (Fermat)

For an odd prime p and $x, y \in \mathbb{Z}$, $p = x^2 + y^2 \iff p \equiv 1 \pmod{4}$

イロト イポト イヨト イヨト

Theorem (Fermat)

For an odd prime p and x, $y \in \mathbb{Z}$, $p = x^2 + y^2 \iff p \equiv 1 \pmod{4}$ $p = x^2 + 2y^2 \iff p \equiv 1, 3 \pmod{8}$ $p = x^2 + 3y^2 \iff p \equiv 3 \text{ or } p \equiv 1 \pmod{3}$

イロト イポト イヨト イヨト 二日

Lemma

Suppose that N is a sum of two relatively prime squares, and that $q = x^2 + y^2$ is a prime divisor of N. Then $\frac{N}{a}$ is also a sum of relatively prime squares.

3/15

Lemma

Suppose that N is a sum of two relatively prime squares, and that $q = x^2 + y^2$ is a prime divisor of N. Then $\frac{N}{a}$ is also a sum of relatively prime squares.

Idea of Infinite Descent:

Descent Step If $p | x^2 + y^2$, gcd(x, y) = 1, then p can be written as $x^2 + y^2$ for some possibly different x, y.

Lemma

Suppose that N is a sum of two relatively prime squares, and that $q = x^2 + y^2$ is a prime divisor of N. Then $\frac{N}{a}$ is also a sum of relatively prime squares.

Idea of Infinite Descent:

Descent Step

If $p | x^2 + y^2$, gcd(x, y) = 1, then p can be written as $x^2 + y^2$ for some possibly different x, y.

Reciprocity Step

If
$$p \equiv 1 \pmod{4}$$
, then $p \mid x^2 + y^2$, $gcd(x, y) = 1$

Lemma

Suppose that N is a sum of two relatively prime squares, and that $q = x^2 + y^2$ is a prime divisor of N. Then $\frac{N}{a}$ is also a sum of relatively prime squares.

Idea of Infinite Descent:

Descent Step

If $p | x^2 + y^2$, gcd(x, y) = 1, then p can be written as $x^2 + y^2$ for some possibly different x, y.

Reciprocity Step

If $p \equiv 1 \pmod{4}$, then $p \mid x^2 + y^2$, gcd(x, y) = 1

Euler solved this for n = 2, 3 as well, but where do these congruences come from?

< □ ▶ < @ ▶ < E ▶ < E ▶ < E • 9 < 0</p>

Quadratic Reciprocity and Legendre Symbols

Definition (Legendre Symbol)

For an odd prime p and an integer a not divisible by p,

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

4 T N 4 A N 4 F

4/15

Quadratic Reciprocity and Legendre Symbols

Definition (Legendre Symbol)

For an odd prime p and an integer a not divisible by p,

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases}$$

Lemma

Let *n* be a nonzero integer, and let *p* be an odd prime not dividing *n*. Then $p | x^2 + ny^2$, gcd(x, y) = 1 if and only if $\left(\frac{-n}{p}\right) = 1$

Connection to $p = x^2 + ny^2$

Quadratic Reciprocity and Legendre Symbols

Definition (Legendre Symbol)

For an odd prime p and an integer a not divisible by p,

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases}$$

Lemma

Let n be a nonzero integer, and let p be an odd prime not dividing n. Then p | $x^2 + ny^2$, gcd(*x*, *y*) = 1 *if and only if* $\left(\frac{-n}{p}\right) = 1$

Connection to $p = x^2 + ny^2$

About Quadratic Reciprocity

Rephrasing the Reciprocity Step

Reciprocity Step If $p \equiv 1 \pmod{4}$, then $p \mid x^2 + y^2$, gcd(x, y) = 1

Lemma

Let *n* be a nonzero integer, and let *p* be an odd prime not dividing *n*. Then $p \mid x^2 + ny^2$, gcd(x, y) = 1 if and only if $\left(\frac{-n}{p}\right) = 1$

$$\begin{pmatrix} -\frac{3}{p} \end{pmatrix} = 1 \iff p = 1,7 \pmod{12}$$

$$\begin{pmatrix} -\frac{5}{p} \end{pmatrix} = 1 \iff p = 1,3,7,9 \pmod{20}$$

$$\begin{pmatrix} -\frac{7}{p} \end{pmatrix} = 1 \iff p = 1,9,11,15,23,25 \pmod{28}$$

$$\begin{pmatrix} \frac{3}{p} \end{pmatrix} = 1 \iff p = \pm 1 \pmod{12} \text{ is the same as } \pm 1^2 \pmod{12}$$

$$\begin{pmatrix} \frac{5}{p} \end{pmatrix} = 1 \iff p = \pm 1,\pm 11 \pmod{20} \text{ is the same as } \pm 1^2,3^2 \pmod{20}$$

$$\begin{pmatrix} \frac{7}{p} \end{pmatrix} = 1 \iff p = \pm 1,\pm 3,\pm 9 \pmod{28} \text{ is the same as } \pm 1^2,5^2,3^2 \pmod{28}$$

Conjecture

For *q* an odd prime and *p* any integer, $\left(\frac{q}{p}\right) = 1 \iff p \equiv \pm \beta^2 \pmod{4q}$, where β is an odd integer. Euler generalizes this in his conjectures for N > 0, $\left(\frac{N}{p}\right) = 1 \iff p \equiv \alpha^2 \pmod{4N}$, for certain odd values of α .

< ロ > < 得 > < き > < き > …

Conjecture

For *q* an odd prime and *p* any integer, $\left(\frac{q}{p}\right) = 1 \iff p \equiv \pm \beta^2 \pmod{4q}$, where β is an odd integer. Euler generalizes this in his conjectures for N > 0, $\left(\frac{N}{p}\right) = 1 \iff p \equiv \alpha^2 \pmod{4N}$, for certain odd values of α .

Euler was really solving special cases of quadratic reciprocity!

Lemma

If $D \equiv 0, 1 \pmod{4}$ is a nonzero integer, then there is a unique homomorphism $\chi: (\mathbb{Z}/D\mathbb{Z})^* \to \{\pm 1\}$ such that $\chi([p]) = \left(\frac{D}{p}\right)$ for odd primes p not dividing D. Furthermore, $\chi([-1]) = 1$ when D > 0 and $\chi([-1]) = -1$ when D < 0.

Corollary

Let *n* be a nonzero integer, and let $\chi : (\mathbb{Z}/4n\mathbb{Z})^* \to \{\pm 1\}$ be the homomorphism above when D = -4n. If *p* is an odd prime not dividing *n*, then the following are equivalent:

(i)
$$p \mid x^2 + ny^2$$
, $gcd(x, y) = 1$
(ii) $\left(\frac{-n}{p}\right) = 1$
(iii) $[p] \in ker(\chi) \subseteq (\mathbb{Z} / 4n\mathbb{Z})^*$

Definition (Quadratic Forms)

A quadratic form is a function of the form $f(x, y) = ax^2 + bxy + cy^2$ for $a, b, c \in \mathbb{Z}$.

Equivalent and Proper Equivalent Forms

Two quadratic forms f(x, y) and g(x, y) are said to be equivalent if there exist integers p, q, r, s such that

$$f(x, y) = g(px + qy, rx + sy)$$

and $ps - qr = \pm 1$. They are properly equivalent if ps - qr = 1.

Definition (Discriminant)

The discriminant of a quadratic form $f(x, y) = ax^2 + bxy + cy^2$ is given by $D = b^2 - 4ac$.

Definition (Reduced Form)

A primitive positive definite form $ax^2 + bxy + cy^2$ is said to be reduced if $|b| \le a \le c$, and $b \ge 0$ if either |b| = a or a = c.

Theorem

Let D < 0 be fixed. Then the number h(D) of classes of primitive positive definite forms of discriminant D is finite, and furthermore h(D) is equal to the number of reduced forms of discriminant D.

Reduced Forms of Discriminant D

n	D	h(D)	Reduced Forms of Discriminant D
1	-4	1	$x^2 + y^2$
2	-8	1	$x^2 + 2y^2$
3	-12	1	$x^2 + 3y^2$
5	-20	2	$x^2 + 5y^2, 2x^2 + 2xy + 3y^2$
7	-28	1	$x^2 + 7y^2$
14	-56	4	$x^{2} + 14y^{2}, 2x^{2} + 7y^{2}, 3x^{2} \pm 2xy + 5y^{2}$
27	-108	3	$x^2 + 27y^2, 4x^2 \pm 2xy + 7y^2$
64	-256	4	$x^{2} + 64y^{2}, 4x^{2} + 4xy + 17y^{2}, 5x^{2} \pm 2xy + 13y^{2}$

3

Connection to $p = x^2 + ny^2$

Theorem

Let $D \equiv 0, 1 \pmod{4}$ be negative, and consider $\chi : (\mathbb{Z}/D\mathbb{Z})^* \to \{\pm 1\}$ from before. Then for an odd prime p not dividing D, $[p] \in \ker(\chi)$ if and only if p is represented by on of the h(D) reduced forms of discriminant D.

Theorem

Let n be a positive integer. Then

$$h(-4n) = 1 \iff n = 1, 2, 3, 4, 7$$

• • • • • • • • • •

Definition (Genus)

We say two primitive positive definite forms of discriminant D are in the same genus if they represent the same values in $(\mathbb{Z}/D\mathbb{Z})^*$

For D = -20

$$p = x^2 + 5y^2 \iff p \equiv 1,9 \pmod{20}$$

$$p = 2x^2 + 2xy + 3y^2 \iff p \equiv 3,7 \pmod{20}$$

• • • • • • • • • • • •

э

Lemma

Give a negative integer $D \equiv 0, 1 \pmod{4}$

(i) The values in (Z /DZ)* represented by the principal form of discriminant D for a subgroup H ⊆ ker(χ).

(ii) The values in $(\mathbb{Z}/D\mathbb{Z})^*$ represented by f(x, y) forms a coset of H in ker (χ)

Definition (Dirichlet Composition)

Let $f(x, y) = ax^2 + bxy + cy^2$ and $g(x, y) = a'x^2 + b'xy + c'y^2$ be primitive positive definite forms of discriminant D < 0 which satisfy gcd(a, a', (b + b')/2) = 1. Then the Dirichlet composition of f(x, y) and g(x, y) is the form

$$F(x, y) = aa'x^2 + Bxy + \frac{B^2 - D}{2}(4aa')y^2$$

• • • • • • • • • • • • •

More Composition and Genera

Theorem

Let $D \equiv 0, 1 \pmod{4}$ be negative, and let C(D) be the set of classes of primitive positive definite forms of discriminant D. Then Dirichlet composition induces a well-defined binary operation on C(D) which makes C(D) into a finite Abelian group whose order is the class number h(D).

Since all forms in a given class represent the same numbers, sending the class to the coset of $H \subseteq \ker(x)$ it represents defines a map

$$\varphi: C(D) \longrightarrow \ker(\chi)/H$$

Note that a given fiber $\varphi^{-1}(H')$ in ker $(\chi)/H$ consists of all classes in a given genus, and the image of φ can be identified with the set of genera.

A D N A B N A B N A B N

Future Steps

With the rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$, where ω is a third root of unity we can solve special cases:

Theorem

Let p be a prime. Then $p = x^2 + 27y^2 \iff p \equiv 1 \pmod{3}$ and 2 is cubic residue modulo p.

Theorem

Let p be a prime. Then $p = x^2 + 64y^2 \iff p \equiv 1 \pmod{4}$ and 2 is biquadratic residue modulo p.

Generalizing work we did using the Legendre symbol is necessary. These generalizations lead us to formulating theories of Galois theory and further Class Field Theory.