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Fermat’s Theorems

Theorem (Fermat)
For an odd prime p and x, y ∈ Z ,
p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4)

p = x2 + 2y2 ⇐⇒ p ≡ 1, 3 (mod 8)
p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 (mod 3)
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Euler’s Approach: Infinite Descent

Lemma

Suppose that N is a sum of two relatively prime squares, and that q = x2 + y2 is a prime
divisor of N. Then N

q is also a sum of relatively prime squares.

Idea of Infinite Descent:

Descent Step

If p | x2 + y2, gcd(x, y) = 1, then p can be written as x2 + y2 for some possibly different
x, y.

Reciprocity Step

If p ≡ 1 (mod 4), then p | x2 + y2, gcd(x, y) = 1

Euler solved this for n = 2, 3 as well, but where do these congruences come
from?
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Quadratic Reciprocity and Legendre Symbols

Definition (Legendre Symbol)
For an odd prime p and an integer a not divisible by p,

(
a
p

)
=


0 if p | a

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

Lemma

Let n be a nonzero integer, and let p be an odd prime not dividing n. Then p | x2 + ny2,
gcd(x, y) = 1 if and only if

(
−n
p

)
= 1

Connection to p = x2 + ny2

About Quadratic Reciprocity
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Rephrasing the Reciprocity Step

Reciprocity Step

If p ≡ 1 (mod 4), then p | x2 + y2, gcd(x, y) = 1

Lemma

Let n be a nonzero integer, and let p be an odd prime not dividing n. Then p | x2 + ny2,
gcd(x, y) = 1 if and only if

(
−n
p

)
= 1(

−3
p

)
= 1 ⇐⇒ p = 1, 7 (mod 12)(

−5
p

)
= 1 ⇐⇒ p = 1, 3, 7, 9 (mod 20)(

−7
p

)
= 1 ⇐⇒ p = 1, 9, 11, 15, 23, 25 (mod 28)(

3
p

)
= 1 ⇐⇒ p = ±1 (mod 12) is the same as ± 12 (mod 12)(

5
p

)
= 1 ⇐⇒ p = ±1,±11 (mod 20) is the same as ± 12, 32 (mod 20)(

7
p

)
= 1 ⇐⇒ p = ±1,±3,±9 (mod 28) is the same as ± 12, 52, 32 (mod 28)
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Special Cases of Quadratic Reciprocity

Conjecture

For q an odd prime and p any integer,
(

q
p

)
= 1 ⇐⇒ p ≡ ±𝛽2 (mod 4q), where 𝛽 is

an odd integer. Euler generalizes this in his conjectures for N > 0,(
N
p

)
= 1 ⇐⇒ p ≡ 𝛼2 (mod 4N), for certain odd values of 𝛼.

Euler was really solving special cases of quadratic reciprocity!
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Building Correspondences

Lemma
If D ≡ 0, 1 (mod 4) is a nonzero integer, then there is a unique homomorphism
𝜒 : (Z/DZ )∗ → {±1} such that 𝜒( [p]) =

(
D
p

)
for odd primes p not dividing D.

Furthermore, 𝜒( [−1]) = 1 when D > 0 and 𝜒( [−1]) = −1 when D < 0.

Corollary
Let n be a nonzero integer, and let 𝜒 : (Z/4nZ )∗ → {±1} be the homomorphism above
when D = −4n. If p is an odd prime not dividing n, then the following are equivalent:

(i) p | x2 + ny2, gcd(x, y) = 1

(ii)
(
−n
p

)
= 1

(iii) [p] ∈ ker(𝜒) ⊆ (Z/4nZ )∗
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Quadratic Forms and Reciprocity

Definition (Quadratic Forms)

A quadratic form is a function of the form f (x, y) = ax2 + bxy + cy2 for a, b, c ∈ Z .

Equivalent and Proper Equivalent Forms
Two quadratic forms f (x, y) and g(x, y) are said to be equivalent if there exist integers
p, q, r, s such that

f (x, y) = g(px + qy, rx + sy)

and ps − qr = ±1. They are properly equivalent if ps − qr = 1.

Definition (Discriminant)

The discriminant of a quadratic form f (x, y) = ax2 + bxy + cy2 is given by D = b2 − 4ac.
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More on Quadratic Forms and Reciprocity

Definition (Reduced Form)

A primitive positive definite form ax2 + bxy + cy2 is said to be reduced if |b| ≤ a ≤ c,
and b ≥ 0 if either |b| = a or a = c.

Theorem
Let D < 0 be fixed. Then the number h(D) of classes of primitive positive definite forms
of discriminant D is finite, and furthermore h(D) is equal to the number of reduced
forms of discriminant D.
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Reduced Forms of Discriminant D

n D h(D) Reduced Forms of Discriminant D
1 -4 1 x2 + y2

2 -8 1 x2 + 2y2

3 -12 1 x2 + 3y2

5 -20 2 x2 + 5y2, 2x2 + 2xy + 3y2

7 -28 1 x2 + 7y2

14 -56 4 x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2

27 -108 3 x2 + 27y2, 4x2 ± 2xy + 7y2

64 -256 4 x2 + 64y2, 4x2 + 4xy + 17y2, 5x2 ± 2xy + 13y2
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Connection to p = x2 + ny2

Theorem
Let D ≡ 0, 1 (mod 4) be negative, and consider 𝜒 : (Z/DZ )∗ → {±1} from before.
Then for an odd prime p not dividing D, [p] ∈ ker(𝜒) if and only if p is represented by
on of the h(D) reduced forms of discriminant D.

Theorem
Let n be a positive integer. Then

h(−4n) = 1 ⇐⇒ n = 1, 2, 3, 4, 7
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Genus Theory

Definition (Genus)
We say two primitive positive definite forms of discriminant D are in the same genus if
they represent the same values in (Z/DZ )∗

For D = −20
p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 ⇐⇒ p ≡ 3, 7 (mod 20)
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Composition and Genera

Lemma
Give a negative integer D ≡ 0, 1 (mod 4)

(i) The values in (Z/DZ )∗ represented by the principal form of discriminant D for a
subgroup H ⊆ ker(𝜒).

(ii) The values in (Z/DZ )∗ represented by f (x, y) forms a coset of H in ker(𝜒)

Definition (Dirichlet Composition)

Let f (x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 be primitive positive
definite forms of discriminant D < 0 which satisfy gcd(a, a′, (b + b′)/2) = 1. Then the
Dirichlet composition of f (x, y) and g(x, y) is the form

F(x, y) = aa′x2 + Bxy + B2 − D
2

(4aa′)y2
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More Composition and Genera

Theorem
Let D ≡ 0, 1 (mod 4) be negative, and let C(D) be the set of classes of primitive
positive definite forms of discriminant D. Then Dirichlet composition induces a
well-defined binary operation on C(D) which makes C(D) into a finite Abelian group
whose order is the class number h(D).

Since all forms in a given class represent the same numbers, sending the class to the
coset of H ⊆ ker(x) it represents defines a map

𝜑 : C(D) −→ ker(𝜒)/H

Note that a given fiber 𝜑−1 (H′) in ker(𝜒)/H consists of all classes in a given genus,
and the image of 𝜑 can be identified with the set of genera.
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Future Steps

With the rings Z [i] and Z [𝜔], where 𝜔 is a third root of unity we can solve special
cases:

Theorem

Let p be a prime. Then p = x2 + 27y2 ⇐⇒ p ≡ 1 (mod 3) and 2 is cubic residue
modulo p.

Theorem

Let p be a prime. Then p = x2 + 64y2 ⇐⇒ p ≡ 1 (mod 4) and 2 is biquadratic
residue modulo p.

Generalizing work we did using the Legendre symbol is necessary. These
generalizations lead us to formulating theories of Galois theory and further Class Field
Theory.
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